Isomerically Pure Organo[60]fullerenes from C₆₀²⁻ Salt: Synthesis and Characterization of 1-Benzyl-2-hydro[60]fullerene

Jian Chen,^a Rui-Fang Cai,^a Zu-En Huang,^{*a} Hou-Ming Wu,^b Shao-Kai Jiang^b and Qian-Fen Shao^c

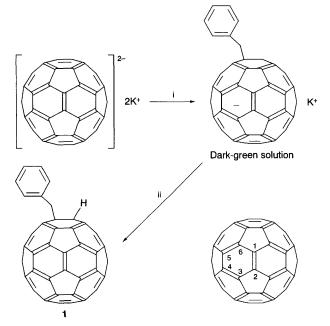
^a Department of Chemistry, Fudan University, Shanghai 200433, PR China

^b Shanghai Institute of Organic Chemistry, Academia Sinica, Shanghai 200032, PR China

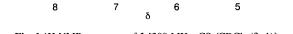
e Research Center of Analysis and Measurement, Fudan University, Shanghai 200433, PR China في Research

Isomerically pure 1-benzyl-2-hydro[60]fullerene is synthesized in 64% yield by the reaction of C_{60}^{2-} potassium salt with benzyl chloride in THF at 50 °C.


There are many reactions for functionalizing C₆₀.¹ Of these, however, little attention has been paid to the chemistry of [60]fullerene anions and no isomerically pure organo[60]fullerenes have so far been obtained from C_{60}^{n-} precursors.²


Recently, we developed a convenient preparation of $A_n C_{60}$ (THF)_m (A = K, Na) by reaction of alkali metal/ 1-methylnaphthalene with C₆₀ in THF at room temp.^{3,4} Some of these salts [such as $K_n C_{60}(THF)_m$, n = 1-3] are very soluble in THF (4-6 \times 10⁻³ mol dm⁻³) and the solutions can be stored under argon for at least one month. Since 1-methylnaphthalene is generally inert and easy to remove, the C_{60}^{n-} solution produced in situ can be used directly for further reactions. These merits encouraged us to investigate the chemistry of $A_n C_{60}(THF)_m$ in detail. Here, we report the synthesis of 1-benzyl-2-hydro[60]fullerene 1 from C_{60}^{2-} potassium salts, which, to our knowledge, represents the first synthesis of isomerically pure organo[60]fullerenes from C_{60}^{n-} salts. We chose the benzyl adduct of C_{60} as the target compound because, despite many previous efforts,⁵ no isomerically pure benzyl adduct of fullerenes has been isolated and fully characterized using other synthetic routes.

Compound 1 was prepared as follows (Scheme 1): under argon, a combination of C₆₀ (240 mg, 0.33 mmol), potassium (26 mg, 0.67 mmol) and 1-methylnaphthalene (1 ml) was stirred in 50 ml THF for 3-4 h to produce a dark red-orange solution. 1 ml ClCH₂Ph (in large excess) was added and the resulting mixture was stirred at 50 °C over 4 h. After centrifugation, 5 ml MeCO₂H was added to the dark-green solution to give a brown precipitate. The product was washed with Et₂O and dried in vacuum to afford 217 mg of a dark brown powder. FAB-MS, ¹H NMR and ¹³C NMR spectra (CS₂/CDCl₃, 300 and 150 MHz,


respectively) indicate that the product contains trace C₆₀ [no multiadducts such as $C_{60}(CH_2Ph)_2$ can be detected in this crude product] and can be easily purified by silica gel flash chromatography [toluene/hexane (v/v): C₆₀, 5:95, 1, 45:55] to afford pure 1⁺ (174 mg, 64% yield). δ 6.67 for C₆₀-H in ¹H NMR of 1 (Fig. 1) suggests that the location of H atom is at C-2.6 The assigned C_s structure for 1 is further supported by the ¹³C NMR spectrum (Fig. 2), which consists of 28 lines of intensity 2 (including three pairs of coincident 2C peaks) and two lines of intensity 1 in the region between δ 154.81 and 135.36 (δ 136.03 is the signal of the benzyl group).

Theoretical studies7 have pointed out that owing to Jahn-Teller effect,⁸ the negative charges of C_{60}^{2-} are localized mainly at 20 carbon atoms along an equatorial line of the molecule. Moreover, if the counterion effect is considered, the negative charges should be more localized, giving rising to considerable enhancement of both reactivity and selectivity of C_{60}^{2-} .

Scheme 1 Reagents and conditions: i, CICH₂Ph, THF, 50 °C, over 4 h; ii. MeCO₂H

5

Fig. 1 ¹H NMR spectrum of 1 [300 MHz, CS₂/CDCl₃ (3:1)]

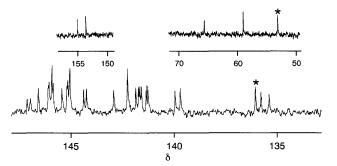


Fig. 2 The expanded ¹³C NMR region of [60]fullerene C-atoms in 1 [150 MHz, CS₂/CDCl₃ (4:1)]. * Indicates benzyl carbons.†

While $C_{60}R^-$ salt is soluble in THF, both C_{60} and $C_{60}R_2$ are insoluble in this solvent. So any such impurities can be removed simply by centrifugation.

The tendency of $C_{60}R^-$ to react further with organic halides XR is dependent on the strength of the X–R bond, steric and electronic factors of R groups and the reaction conditions. For example, whereas electrochemical reaction of C_{60}^{2-} with excess ICH₃ at room temp. gives mainly bisadduct $C_{60}Me_2$ (mixture of two isomers),^{2b} the $C_{60}(CH_2Ph)^-$ in our case is stable (this species, however, can react smoothly with CISiMe₃ at room temp. to afford novel dialkylated[60]fullerene with two different R groups, Jian Chen *et al.*, unpublished results) even when exposed to a large excess of benzyl chloride at a temperature as high as 50 °C. From these results we expect that full utilization of the diverse and unique chemical reactions of C_{60}^{2-} and other [60]fullerene anions will open a new window for selective functionalization of C_{60} .

We are grateful to Professor Yong-Zhen Xu for collecting FAB-MS spectra. Referee comments on our manuscript are highly appreciated. This work was supported by National Natural Science Foundation of China (Grant 29371011) and Science Foundation of Shanghai Committee of Science and Technology (Grant 925214001).

Received, 5th April 1995; Com. 5/02180D

Footnote

† Spectroscopic data for 1: FAB-MS: 813 (M⁺), 720 (M⁺ – CH₃C₆H₅); ¹H NMR (300 MHz, CS₂/CDCl₃ (3 : 1)): δ 4.81 (s, 2H, CH₂), 6.67 (s, 1H, C₆₀-H), 7.48 (m, 1H, Ar-H), 7.56 (m, 2H, Ar-H), 7.84 (d, 2H, Ar-H); ¹³C NMR [150 MHz, CS₂/CDCl₃ (4 : 1)]: δ 52.99 (CH₂), 58.87 (CH in C₆₀ core), 65.50 (quaternary C in C₆₀ core), 127.58 [CH(aryl)], 128.56 [CH(aryl)], 131.06 [CH(aryl)], 136.03 [C(aryl)], 135.36, 135.76, 139.68, 139.94, 141.28, 141.35, 141.58, 141.66, 141.72, 141.86, 142.92, 144.25, 144.39, 145.15, 145.20, 145.44, 145.85, 146.06, 146.08, 146.08, 145.85, 153.36, 154.81 (C₆₀, 22 lines of 2C), 142.26, 145.06, 145.92 (C₆₀, three pairs of coincident

2C peaks), 146.97, 147.12 (C_{60} , two lines of 1C); UV–VIS (toluene, 400–900 nm): 706 nm (ε *ca*. 4.3 × 10² dm³ mol⁻¹ cm⁻¹), 433 (4.0 × 10³), FTIR (KBr): 3017 cm⁻¹(w), 2998(w), 2965(w), 2912(w), 2845(w), 1493(w), 1458(w), 1427(m), 1258(w), 1214(w), 1183(m), 1155(w), 1117(w), 1067(w), 1029(w), 964(w), 807(m), 760(m), 744(m), 722(m), 697(s), 685(w), 663(w), 575(s), 563(m), 547(m), 525(vs), 512(m), 475(w).

References

- 1 R. Taylor and D. R. M. Walton, Nature, 1993, 363, 685.
- 2 (a) J. W. Bausch, G. K. S. Prakash, G. A. Olah, D. S. Tse, D. C. Lorents, Y. K. Bae and R. Malhotra, *J. Am. Chem. Soc.*, 1991, **113**, 3206; (b) C. Caron, R. Subramanian, F. D'Souza, J. Kim, W. Kutner, M. T. Jones and K. M. Kadish, *J. Am. Chem. Soc.*, 1993, **115**, 8505.
- 3 J. Chen, Z.-E. Huang, R.-F. Cai, Q.-F. Shao, S.-M. Chen and H.-J. Ye, J. Chem. Soc., Chem. Commun., 1994, 2177; J. Chen, Q.-F. Shao, Z.-E. Huang, R.-F. Cai and S.-M. Chen, Chem. Phys. Lett., 1995, 235, 570; J. Chen, R.-F. Cai, Z.-E. Huang, Q.-F. Shao and S.-M. Chen, Solid State Commun., 1995, 95, 239; J. Chen, Z.-E.Huang, R.-F. Cai, Q.-F. Shao and H.-J. Ye, Solid State Commun., 1995, 95, 233.
- 4 Other examples of A_nC₆₀(THF)_m, see: R. E. Douthwaite, A. R. Brough and M. L. H. Green, J. Chem. Soc., Chem. Commun, 1994, 267; X. Liu, W. C. Wan, S. M. Owens and W. E. Broderick, J. Am. Chem. Soc., 1994, 116, 5489.
- 5 P. J. Krusic, E. Wasserman, P. N. Keizer, J. R. Morton and K. F. Preston, *Science*, 1991, **254**, 1183; P. J. Krusic, E. Wasserman, B. A. Parkinson, B. Malone, E. R. Holler, P. N. Keizer, J. R. Morton and K. F. Preston, *J. Am. Chem. Soc.*, 1991, **113**, 6274; S. R. Wilson and Y. Wu, *J. Am. Chem. Soc.*, 1993, **115**, 10334; G. Lem, D. I. Schuster, S. H. Courtney, Q. Lu and S. R. Wilson, *J. Am. Chem. Soc.*, 1995, **117**, 554; Y.-L. Sun, Z.-E. Huang, E.-F. Cai, J.-D. Wei, J. Chen, J.-W. Wang, Y. Yu, E.-B. Liu and D.-Y. Fang, *Youji Huaxue*, 1993, **13**, 549; X.-H. Guo, Z.-Y. Liu, F.-R. Song and S.-Y. Liu, *Chem. J. Chinese Univ.*, 1993, **14**, 563.
- 6 P. J. Fagan, P. J. Krusic, D. H. Evans, S. A. Lerke and E. Johnston, J. Am. Chem. Soc., 1992, **114**, 9697; A. Hirsch, T. Grösser, A. Skieve and A. Soi, Chem. Ber., 1993, **126**, 1061.
- 7 J. Fagerström and S. Stafström, *Phys. Rev. B*, Solid State, Ser 3, 1993, 48, 11367.
- 8 P. Paul, Z. Xie, R. Bau, P. D. W. Boyd and C. A. Reed, J. Am. Chem. Soc., 1994, 116, 4145.